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ABSTRACT

The thermodynamic approach to the fracture of linearly viscoelastic ma-
terials presented earlier is extended to include fatigue. The theoretical ;
analysis of the growth of an internal spherical flaw due to a uniformly dis-
tributed, oscillatory input of displacement in the radial direction predicts
a growth-rest type of flaw growth which depends upon the properties of the
media and the loading frequency. Comparison of these results with experi-
mental crack growth data for a pre-cracked sheet specimen subjected to an
oscillatory displacement input discloses a qualitative similarity in behavior.
It is, therefore, believed that the analytical model employed is representa-
tive of real flaw behavior and that its study can reveal the main features Jf
macroscopic flaw-growth. '

INTRODUCTION

At the International Conference on Fracture held in Sendai, Japan, we
presented a formulation of the fracture problem for linearly viscoelastic ma-
terials based upon the energy balance concept.(l 2) The approach is similar 5
to that employed by Griffith(3) in studying fracture of brittle materials,
but includes the appropriate terms for viscous energy dissipation.

Now whereas it is in principle possihle to predict the behavior in an
arbitrary crack configuration, e.g. a Griffith(3) or Sneddon(%) type flaw,
the relative mathematical complexity for these geometries is considerable,
particularly when compounded with the viscoelastic time dependence. For ana-
lytical purposes, it is therefore desirable to find a flaw configuration
whose analysis is relatively simple yet whose behavior is similar to real ;
crack behavior. Derivation of the critical stresses for various flaw configdi
urations in anelastic media yielded }

A substantial portion of the work reported herein was supported by the Na- ‘
tional Aeronautics and Space Administration under Research Grant No. NsG 172-.
60 and Contract No. NGR-45-003-029. ;
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. TABLE I. ELASTIC FRACTURE STRESSES | ..

Flaw Geometry . ﬂ Critical Stress |
2-D Crack (Griffith) o V2w 75575; E
Cylindrical Cavity (a/b-0) ‘ V22 /§T7§; f '
3-D Crack (Sneddon) S Y21/3 /55752
Spherical Cavity (a/b-0) ‘ 4/3 /557;_

Note that although the stress analysis for the cylindrical and spherical
flaws are much simpler, the elastic fracture stress expressions are function-
‘ally similar and are even quantitatively comparable.* Encouraged by the
above, it is hypothesized that a similar comparison will exist for viscoelas-
tic media. The study of viscoelastic fracture may thus be conducted with

‘considerable simplification by using the cylindrical or spherical flaw geom-
‘etry. All analysis in this paper assumes a spherical flaw of initial radius
a, and loaded in hydrostatic tension at radius b. ‘

The Sendai paper presented the failure calculations for four different °

‘loading histories: constant stress (creep), constant strain (stress relaxa- -
‘tion), constant stress rate, and constant strain rate. For example, the time
;to failure, tg, under constant stress was found to be determined by:

TABLE II. TIME TO FAILURE FOR CREEP LOADING :
Flaw Geometry '_;Stress State .. Failure Criterion, a/b>d . .

... - Cylindrical Equi-biaxial . G, ... .;.® 2/V2 /(L/ao)/(ZDcrp(t f)-ng
: cavity . i
Spherical Hydrostatic O ritical = 4/3 /(T/ao)/(ZDcrp(tf)-Dg
cavity tension ‘

-1
Dcrp(t), creep compliance, psi ~; Dg Dcrp(o)’ glassy compliance.

This. paper extends the results of the Sendai paper to include the case
of failure under repeated loading of a general linearly viscoelastic material.
Results for a three element model were presented previously: ~(3)  Thus it is o
possible to predict fatigue crack initiation and growth in lineaxly visco- K
elastic materials. L1l

THERMODYNAMIC CRITERION

Neglecting any energy dissipation in the form of kinetic energy or per: Lo
manent (plastic) deformation, the conservation of energy concept requires <
that : oo

. Y

I=F+ 2D+ SE . COI

*# In the derivation of the cylinder and sphere expressioas, it is assumed

- that the increase in fracture surface area is uniformly distributed around 7,

the periphery of the flaw. Although this is probably not true, this hypo- ;,,
thesis does not appear to markedly affect numerical results. :




where I is the power input of the applied loading at the boundary, F is the -
‘rate of increase of the free (strain) energy, 2D is the dissipation (mechan- .
ical power converted into heat flow), and SE is the rate of increase of sur- :
face energy (the dot over a symbol denotes differcntiation with respect to
_time). Specifically, one has

I-ZT uy 2
: v . .
where Ti are the components of the stress vector on the surlace, A, and
F+2D= EE i f ci 4 dt d(vol) : (3)
vol o
SE=-3 [ 7Taa %)
dt A .

‘where T is the energy required to produce one unit of new suriace area.

: The stress distribution around a spherical flaw of radius a{t), such
that a(0) = a., in an elastic media g?ich is subjected to hydrostatic tension
cof(t) at radgus r = b, is given by

l-a(ag/r3)

g _(r,t) = o, f(t) ———— . (5)
r .0 1-ak3
' - . 14(a/2) (@3/x%) “ )
0, (x,t) = 0, (r,t) = gyf(t) T e
4’ ’ 0 0 l-aka - .
:where
a(t) = [alt)/ag]®; k= ay/b (7

Since the stress distribution is independent of the material properties (aléo:
characteristic of the stresses around a cylindrical flaw), the solution for a.
Aviscoelastic media can be obtained by application of the Laplace transform

) analogy Thus it is possible to show that the infinitesimal strains for a
linearly viscoelastic, isotropic, incompressible, homogeneous material are ..
: % - t BDcrU(t-T) o
e (rt) = -2e,(r,t) = — D 5(t) + f $(t) dr (8 .
. : r3 o o 9(t-1) ‘ ‘
where S(t) is a cavity-size, load history dependent function defined as
3 ad(r) f£(r)
s(t) =-3 25 | (9)
1- [a(t)-/b]3 :

and the material”behavior is described by the creep compliance D (). Suo-
stitution of (5) thru (8) into the energy equation (1) yields th&"P follow1no
condition for cavity growth

ffn'+ t oy £ 9D___ (E-1) : e
=== (&) 57 |DS(E) *+ ] — oy S{t) dr| df + 2aT) = 0  (i0;
at 5 S0 3¢ PSR Y i a(e- ‘) j : f ' %

—q—-—‘/



Note that this condition is satisfied if a = 0 or if the quaqtity in the
brackets is zero. [The former is the condition of a stationary flaw and holds
up to the fracture initiation time, i.e. a(t) = 0 for t < tg. The latter is

an integral expression for a(t) and describes the propagating flaw, i.e.
t>¢t..
f

In a similar manner, the assumption of a displacement loading u(b,t)
= uog(t) leads to the condition

- 4b5 3E o1 (6-1) |
a ( ) f [Egg(&) + £ (-0 8 g(t)dt| dt - 2aT} = 0 (11)(

‘where E (t) is the relaxation modulus, E &(0) = E , and the obvious.sta-

tionaryrgolution a(t) = 0 as well as the céfidition £Br a propagating flaw are
again obtained.

FATIGUE FAILURE

Consider now the case of a sinusoidally applied displacement, i.e. g(t) :
= gin wt. Since we desire the non-stationary solution we set the bracketed

quantity of (11) to zero. Integrating the first term and rearranging produ-
ces '

T (a)8(p)2 . Ee £ g § e &0 |
Za(b) (uo) =7 8 +c{a£z a(g-my  8(1) dr & an

which if g(0) = 0 as in this case, can be expressed in the equivalent form
T (a)6[b ) "Ag.j_gx_z | '
Za(b) (uo) £ 9L v E l(E—v)dv dg (13

Now it is desirable to introduce a specific representation for the re-.
laxation modulus. The expression used here is '

E o (t) = E, +Z E, exp(-t/1,) (14)
i=1 .
which has been shown to be capable of fittin§ experimental stress relaxation
data with a sufficient degree of accuracy The material description is '
thus general. Substituting (14) into (13) and integrating yields

6 2 E Wt ?
%(%) (—-b—)--—f-(l—cOSZu)t)+ZE —i [w_t._'________sinZwt] <!

uo i 1+w21_i 2 4
2 i -t/'ri A
<+ exp cos wt - 1 ' (15)
1+w21?
i
3.3
woT ~t/T
- 1 exp 1 sin wt]
,14.1.\2"2)2 I I
\*'w ‘i - -
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W Ti.

4(1fwzri)

+

[1 - cos 2wt] | (15 contd.)

which is the thermodynamic condition for determining the flaw size variation :

with time, a(t) » a, for t > tf.

ILLUSTRATIVE EXAMPLE
Figure 1 shows a plot of equation (15) for Solithane 113 cyclically

loaded at a rate of 5.4 cps. A seven element representation for the relaxa-~
tion modulus was used, i.e. N =7 in equation (14) where E = 558.0 psi and

Ti i,psi
107,  108.17
1072 208.62
107, 5664.1
107} 16491
1070 23743
1075 25303
107 22357

" The ordinate of Figure 1 is proportional to the fifth power of the flaw radi-
us and the abscissa is time. The figure, therefore, illustrates that portion
of flaw behavior associated with flaw size variation. For the complete pic--
ture of flaw growth during fatigue, the stationary flaw solution a = 0 must
also be considered.

We interpret the results in the following manner: Until the flaw size
predicted by equation (15) equals the initial flaw size, the stationary flaw
solution governs and the flaw will not grow, i.e. a(t) =a, for t ¢ t (see
Figure 2). At t = t_ the flaw begins to increase in size gollowing a path
predicted by the non~stationary solution of the general thermodynamic power
equation (equation (15)). Note, however, that this solution undergoes a ser-
ies of local maxima immediately after which the flaw is predicted to decrease
in size and then increase until it reaches a new maximum larger than the
first. This behavior must be examined in light of its physical significance.
For a flaw to exhibit this behavior, it would be necessary for the crack to
reheal or bond itself back together. This is highly unlikely for the new sur-
faces tend to remain separated once a crack has developed. This means that
once the flaw grows to one of the local maxima it will remain at that size _
(stationary solution governing) until the non-stationary solution reaches and
exceeds that value. The flaw will then grow until it reaches a new maximum.
In this manner, a fatigue crack will propagate in a series of growth and rest
periods until the flaw can no longer accommodate the applied load by deforma-
tion alone, and rapid fracture occurs. This stop-start behavior is illustra-:
ted in Figure 2., :

EXPERIMENTAL RESULTS

The foregoing calculations should be viewed as a qualitative indication -,
of the motion of a crack in a ﬂwn14ﬁ gtrain F{e1ﬂ' Recange the ornwth of a

crack in an infinite medium (tne geometry considered in the above calcula-




tions) changes the stress magnitudes, if not the stress distribution around
the flaw, the growth rate depends on the current flaw size. .If we neglect
this flaw size dependence as embodied essentially in the fifth power depend-
ence of the flaw radius on time (cf Fig. 2), we are left with the jump or
stop-start propagation of a flaw. Let us now compare this growth behavior
with experimental results obtained in a geometry which eliminates the depend-
ence on flaw size. The specimen used in previous crack propagation studies
8,9) ig shown inset in Figures 3 and 4.

The material employed was Solithane 113, made up of equal parts by vol-
ume of catalyst and prepolymer.(10 The strain history applied to the speci-
men was a sinusoidal strain of magnitude € superposed on a constant prestrain
of magnitude €. Note that in the calculations the prestrain is equal to zero.

The results of the two tests are shown in Figures 3 and 4. The differ-
ence in the two is the strain level. Figure 3 presents data for a maximum
strain of 20%Z and Figure 4 for 25%. In both cases the prestrain was one-half
the maximum. For the low straim gj, = 20%, the rate of crack propagation is
not as uniform and regular as the calculations indicate. This deviation may
be attributed to the influence of local variations in material properties
where small variations become less important at higher strains and higher
crack velocities. This is evident when one looks at Figure 4 which is the
results of prescribing a strain of value €nax = 25%.

The fracture progressed faster at the larger strain level and there were
not as many cycles before failure was noted. Notwithstanding the differences
between the theoretical model and the flaw configuration tested, the actual
crack propagation in a start-stop or stepped fashion which resembles the he-

_havior predicted (see Figure 2).

The data were obtained by photographing the advancing crack with a Hycam
variable speed camera (5 to 10,000 frames per second) and each point plotted
corresponds to one frame. Note that in Figure 4 some points seem to be miss-
ing. The reason for this data gap is that it was hard to determine the loca-
tion of the crack tip because the crack was almost closed at that time.
Because this condition corresponds to zero strain, the data gaps locate con- .
veniently the beginning and end of one complete cycle.

Note furthermore that although the timescale (zero on the time scale was
unintentionally shifted on Figure 4 by about 0.12 sec) indicates the length
of a cycle, the beginning of the complete cycle from zero strain through the .

maximum strain and back to zero strain begins at 0.12 sec. At that time the -
- velocity of crack propagation is zero, increasing rapidly to its maximum near
the peak strain and then reaches zero again.

CONCLUSIONS

Although the theoretical prediction was based upon a three-dimensional
stress field in which the fracture surface is assumed equally distributed
over the flaw surface and a simple sinusoidal loading whereas the experimental
study was conducted on a two-dimensional configuration using a superimposed
prestrain and sinusoidal strain variation, a qualitative similarity between
the actual and predicted fiaw behavior has been demonstrated. This is deemed
significant for two reasons. First, the predicted growth-rest cycle of crack



propagation has been demonstrated and secondly, the results tend to substan-
tiate the hypothesis that there is a close association between the spherical
flaw geometry with its uniformly distributed new surface generation and an
actual sharp pointed crack. The latter will greatly simplify the study of
macroscopic crack propagation in viscoelastic media.

While the above is encouraging, a quantitative correlation is highly de-
sirable. This should follow additional experimental verification, such as is
in progress for the sheet specimen previously employed. Furthermore, it
should be emphasized that the theoretical development presented here does not
inc¢lude the effects of (1) variations from equal triaxial loading, (2) finite
strains, (3) compressibility, and (4) explicit consideration of a crack
rather than smooth flaw fracture geometry. The present results, however, are
believed to furnish a useful guide for investigating fracture initiation and
growth in linearly viscoelastic media.
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